Quenched limits for transient, ballistic, sub-Gaussian one-dimensional random walk in random environment

نویسنده

  • Jonathon Peterson
چکیده

We consider a nearest-neighbor, one-dimensional random walk {Xn}n≥0 in a random i.i.d. environment, in the regime where the walk is transient with speed vP > 0 and there exists an s ∈ (1,2) such that the annealed law of n−1/s(Xn − nvP ) converges to a stable law of parameter s. Under the quenched law (i.e., conditioned on the environment), we show that no limit laws are possible. In particular we show that there exist sequences {tk} and {t ′ k} depending on the environment only, such that a quenched central limit theorem holds along the subsequence tk , but the quenched limiting distribution along the subsequence t ′ k is a centered reverse exponential distribution. This complements the results of a recent paper of Peterson and Zeitouni (arXiv:math/0704.1778v1 [math.PR]) which handled the case when the parameter s ∈ (0,1). Résumé. On examine des marches aléatoires unidimensionnelles en milieu aléatoire avec un environnement i.i.d., dans le régime où la marche est transiente avec vitesse vP > 0 et où il existe s ∈ (1,2) tel que la loi “annealed” (i.e., moyennée) de n−1/s(Xn−nvP ) converge vers une loi stable de paramètre s. Sous la loi “quenched” (i.e. conditionnelement à l’environnement) on montre qu’il n’existe pas de loi limite. En particulier on prouve qu’il existe des suites {tk} et {t ′ k}, dépendant de l’environnement, tel qu’un théorème de limite centrale quenched est valide le long de la suite tk , mais où la distribution limite suivant la suite t ′ k est une distribution centrée exponentielle inverse. Ceci complète les résultats d’un article récent de Peterson et Zeitouni (arXiv:math/0704.1778v1 [math.PR]) qui traitait le case de paramètre s ∈ (0,1). MSC: Primary 60K37; secondary 60F05; 82C41; 82D30

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quenched Limits for Transient, Zero Speed One-Dimensional Random Walk in Random Environment

We consider a nearest-neighbor, one dimensional random walk {Xn}n≥0 in a random i.i.d. environment, in the regime where the walk is transient but with zero speed, so thatXn is of order n for some s < 1. Under the quenched law (i.e., conditioned on the environment), we show that no limit laws are possible: there exist sequences {nk} and {xk} depending on the environment only, such that Xnk − xk ...

متن کامل

A Local Limit Theorem for Random Walks in Balanced Environments

Central limit theorems for random walks in quenched random environments have attracted plenty of attention in the past years. More recently still, finer local limit theorems — yielding a Gaussian density multiplied by a highly oscillatory modulating factor — for such models have been obtained. In the one-dimensional nearest-neighbor case with i.i.d. transition probabilities, local limits of uni...

متن کامل

Weak weak quenched limits for the path-valued processes of hitting times and positions of a transient, one-dimensional random walk in a random environment

Abstract. In this article we continue the study of the quenched distributions of transient, one-dimensional random walks in a random environment. In a previous article we showed that while the quenched distributions of the hitting times do not converge to any deterministic distribution, they do have a weak weak limit in the sense that viewed as random elements of the space of probability measur...

متن کامل

Quenched Invariance Principle for Multidimensional Ballistic Random Walk in a Random Environment with a Forbidden Direction by Firas Rassoul-agha

We consider a ballistic random walk in an i.i.d. random environment that does not allow retreating in a certain fixed direction. We prove an invariance principle (functional central limit theorem) under almost every fixed environment. The assumptions are nonnestling, at least two spatial dimensions, and a 2 + ε moment for the step of the walk uniformly in the environment. The main point behind ...

متن کامل

Quenched Invariance Principle for Multidimensional Ballistic Random Walk in a Random Environment with a Forbidden Direction

We consider a ballistic random walk in an i.i.d. random environment that does not allow retreating in a certain fixed direction. We prove an invariance principle (functional central limit theorem) under almost every fixed environment. The assumptions are nonnestling, at least two spatial dimensions, and a 2 + ε moment for the step of the walk uniformly in the environment. The main point behind ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007